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Abstract

Background Alzheimer’s disease, the most common cause of dementia, causes a progressive

and irreversible deterioration of cognition that can sometimes be difficult to diagnose, leading

to suboptimal patient care.

Methods We developed a predictive model that computes multi-regional statistical morpho-

functional mesoscopic traits from T1-weighted MRI scans, with or without cognitive scores.

For each patient, a biomarker called “Alzheimer’s Predictive Vector” (ApV) was derived using

a two-stage least absolute shrinkage and selection operator (LASSO).

Results The ApV reliably discriminates between people with (ADrp) and without (nADrp)

Alzheimer’s related pathologies (98% and 81% accuracy between ADrp - including the early

form, mild cognitive impairment - and nADrp in internal and external hold-out test sets,

respectively), without any a priori assumptions or need for neuroradiology reads. The new

test is superior to standard hippocampal atrophy (26% accuracy) and cerebrospinal fluid beta

amyloid measure (62% accuracy). A multiparametric analysis compared DTI-MRI derived

fractional anisotropy, whose readout of neuronal loss agrees with ADrp phenotype, and

SNPrs2075650 is significantly altered in patients with ADrp-like phenotype.

Conclusions This new data analytic method demonstrates potential for increasing accuracy

of Alzheimer diagnosis.
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Plain Language Summary
Alzheimer’s disease is the most

common cause of dementia, impact-

ing memory, thinking and behaviour.

It can be challenging to diagnose

Alzheimer’s disease which can lead

to suboptimal patient care. During

the development of Alzheimer’s dis-

ease the brain shrinks and the cells

within it die. One method that can be

used to assess brain function is

magnetic resonance imaging, which

uses magnetic fields and radio waves

to produce images of the brain. In this

study, we develop a method that uses

magnetic resonance imaging data to

identify differences in the brain

between people with and without

Alzheimer’s disease, including before

obvious shrinkage of the brain occurs.

This method could be used to help

diagnose patients with Alzheimer’s

Disease.
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A lzheimer’s disease (AD) is the most common cause of
dementia worldwide and is characterised by progressive
cognitive impairment and brain atrophy1. The disease is

characterised by several events. The National Institute on Aging and
Alzheimer’s Association has proposed a classification system to
categorise individuals based on biomarker evidence of pathology.
This is called the ATN classification system and is used to rate
people for the presence of cerebrospinal fluid β-amyloid (CSF Aβ or
amyloid positron emission tomography (PET): 'A'), hyperpho-
sphorylated τ (CSF pτ or τ PET: 'T'), and neurodegeneration
(atrophy on structural magnetic resonance imaging (MRI), FDG)
PET, or CSF total τ: 'N'), resulting in eight possible biomarker
combinations2. Furthermore, a recent report on the involvement of
microglial activation in the spread of τ tangles over the neocortex in
AD suggests an additional inflammation biomarker for AD3. The
most consistent structural imaging finding in AD is the reduced
hippocampal volume4, but this is arguably not the most specific
structural biomarker as AD frequently presents with non-amnestic
symptoms with initial involvement of extra-temporal regions of the
brain5. Furthermore, the reduced hippocampal volume has been
found in many other neuropsychiatric conditions including
schizophrenia6, depression7 and hippocampal sclerosis8 as well as
the recently described limbic-predominant age-related TDP-43
encephalopathy9. Together with the hippocampal volume,
Aβ(1–42), phosphorylated τ (pτ), and total τ (τ) CSF biomarkers
have been shown to discriminate patients with AD from healthy
controls10. However, their introduction into clinical practice is
limited by considerable variability between laboratories and assay
batches10. Similarly, blood-based biomarkers, which are eagerly
awaited to address issues related to the invasiveness and high cost of
CSF-based ones, often stall in the early stages because of a dis-
connect between academia, where biomarkers are identified, and
industry, where they should be developed and commercially
distributed11.

In these last 40 years, improved computational power and
storage capacity have led to numerous advances in developing
non-invasive and low-cost structural biomarkers for AD that
combine neuroimaging approaches, in particular structural
MRI12, with machine learning. This approach involves the
acquisition of image data, the segmentation of the region of
interest (ROI), feature extraction and selection for classification/
prediction. Critically, features extracted from radiological images
are able to reveal useful new biology13,14 hidden to the clinician’s
eye15—at a mesoscopic scale. For example, the mesoscopic
architecture of entire tumours can reveal stromal phenotype or
immune context, with strong prognostic or predictive utility16,17.
In a radiomics analysis, the extracted features represent statistical
morpho-functional traits of intensity, shape, texture, scale, grey
level co-occurrence matrix (GLCM), grey level run-length matrix
(RLM), grey level size zone matrix (GLSZM), neighbourhood grey
tone difference matrix (NGTDM) and neighbourhood grey level
dependence matrix (NGLDM)18. A number of studies have
shown texture differences between AD patients and healthy
controls (HC) in structures such as the hippocampus, corpus
callosum, and thalamus19,20. Supplementary Data 1 summarises
the results and methods of the most cited papers published in the
last 5 years on the classification of AD and AD-related mild
cognitive impairment (MCI) patients using multimodal features.
Zhang et al.21 for instance used a single-hidden-layer neural
network and predator-prey particle swarm optimisation algo-
rithm to classify HC from AD patients. They extracted texture
features from one selected axial slice of a T1-weighted (T1w) MRI
scan and obtained 93% accuracy in an internal test set. Similarly,
Sorensen et al.22, with a linear discriminant analysis extracted
cortical thickness measurements, volumetric measurements and
hippocampal volume, shape and texture features and reached

from a T1w MRI scan with 63% accuracy. With the integration of
genetic and cerebrospinal fluid biomarkers, Tong et al.23 reached
a 0.78 area under the curve (AUC) in the discrimination between
HC and people with an AD-related mild cognitive impairment,
thus pushing the technology towards earlier detection. They used
a non-linear graph fusion method to reduce the number of
volumetric features extracted from T1w MRI, intensity features
extracted from PET data, three CSF measures and one genetic
categorical feature. An improved performance was obtained with
the view-aligned hypergraph learning approach used by Lin
et al.24. They obtained 93, 90, 80 and 79% accuracies in the
discrimination between HC and AD patients, HC and progressive
MCI, HC and MCI, and stable and progressive MCI patients,
respectively. In aggregate, when all patients, including control,
prodromal forms of AD and AD are combined, most methods
reach lower accuracy values. Of note, in most studies, models
were trained and tested on an internal dataset only (Supple-
mentary Data 1).

This current study proposes a method able to characterise
early and later forms of Alzheimer’s disease with the extraction
from a T1w MRI sequence of 29,520 statistical morpho-
functional traits distributed over a multi-regional brain mask
obtained with an automatic segmentation. Healthy brain and
diseases unrelated to AD pathology, including Parkinson’s dis-
ease and frontotemporal dementia have been combined for the
development of a set of tools able to reveal the mesoscopic
architecture unique to AD.

Methods
The study workflow is summarised in Fig. 1. The analysis of
baseline age-matched T1w MRI images consisted of a two-step
combined approach with and without the additional information
given by cognitive scores and CSF-based biomarkers. The model
was trained on 1.5 T T1w MRI scans obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI). After stratified
randomisation, 70% of data were used for training and 30% for
validation (robustness test shown in Supplementary Fig. 1). The
control group (nADrp) included healthy controls, patients with
frontotemporal dementia and with Parkinson’s disease and the
disease group (ADrp) included people with AD-related mild
cognitive impairment (referred to as MCIAD in the text) and with
Alzheimer’s disease. The method was tested on four cohorts: (1)
The unseen 1.5 T ADNI cohort (30% of the entire 1.5 T cohort,
made up of 65 CN, 62 MCIAD, 54 AD, 28 FTD and 25 PD); (2)
The unseen 1.5 T dataset: 64 people obtained from the Open
Access Series of Imaging Studied (OASIS) consortium with
baseline T1w MRI scan and the mini-mental state examination
(MMSE) score (53 CN and 11 AD); (3) The unseen 3 T dataset:
402 people obtained from ADNI with T1w MRI scan, MMSE,
logical memory delayed recall total (LDELTOTAL), Aβ, τ and pτ
(172 CN, 161 MCIAD and 69 AD); (4) The ‘real-world’ memory
clinic cohort (IMC cohort): 83 patients with atypical presentations
who underwent clinical Amyloid PET imaging as part of their
diagnostic workup with a 1.5 T T1w MRI scan (45 amyloid-
negative (AMY−) and 38 amyloid-positive (AMY+)) and
LDELTOTAL and MMSE scores (for a subgroup of 22 people: 11
AMY− and 11 AMY+).

For the IMC cohort, we received ethical approval from the
Camden and Kings Cross UK Research Ethics Committee (IRAS
n. 273966) to perform retrospective anonymised and unlinked
analysis of all clinical data (including MR images), provided that
these were anonymised at source by a member of the clinical care
team. In particular, the study protocol states: 'For all patients
undergoing Amyloid PET at Imperial College Healthcare NHS
Trust (ICHT) from December 2013 to January 2023 we will
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perform retrospective anonymised and unlinked analysis of
clinically collected data. This will be anonymised at source by
members of the clinical care team. The data will be unlinked and
there will be no prospective element to this data collection.'
Informed consent was waived, as is the case for retrospective
analysis of anonymised imaging data.

Data for ADNI and OASIS are openly available upon regis-
tration of investigator interest. All participants provided informed
consent. Details about the Ethics statement of the ADNI study
population can be found at: https://adni.loni.usc.edu. Details
about the Ethics statement of the OASIS study population can be
found at: https://www.oasis-brains.org/#data. Protocols for data
collection and the list of institutions who approved data collection
can be found at https://adni.loni.usc.edu/methods/documents/ for
ADNI. OASIS is made available by the Washington University
Alzheimer’s Disease Research Center, the Howard Hughes
Medical Institute (HHMI) at Harvard University, the Neu-
roinformatics Research Group (NRG) at Washington University
School of Medicine, and the Biomedical Informatics Research
Network (BIRN).

MRI segmentation and radiomic analysis. T1w MRI images
were segmented to brain masks of 115 sub-regions using the
FreeSurfer’s recon-all function (45 regions obtained from the
segmentation of the white matter +70 subcortical regions
obtained from the additional segmentation of the cortex)25,26.
Before segmentation, this function performs many pre-processing
steps, including bias correction, image sampling and coregistra-
tion; the steps and brain regions extracted are summarised in
Supplementary Table 1. The multi-regional brain masks were
post-processed for the extraction of 656 features for each region
using in-house software (TexLAB 2.0), which runs on
MATLAB16. The extracted features are related to the shape and
size, intensity, texture and wavelet decompositions of isotropic
(1 × 1 × 1) T1w MRI scans (Supplementary Data 2). The stan-
dardised radiomic features with a false discovery rate (FDR) <5%
were selected as the input for the LASSO. Tenfold cross-
validation was performed to select lambda which yielded the
minimum cross-validated mean squared error. The weighted sum
of the selected features gave the Alzheimer’s predictive Vector,
ApV. For improving the model performance, the method was
integrated with two cognitive measurements (MMSE and
LDELTOTAL) and three CSF-based biomarkers (Aβ, τ and pτ).
The result was a second predictive vector: ApVs.

The model is composed of two steps:

1. In the first stage of the classification, the algorithm works
on the discrimination of people with an Alzheimer related
pathology. The two inputs to the LASSO1 are the nADrp
group, which includes healthy controls and people with
Parkinson’s and frontotemporal dementia, and the ADrp
group, which includes people with MCIAD and AD. The
result of the LASSO is a reduced number of features/regions
with their correspondent weights. The weighted sum of
regions/features gives the ApV1 (ApV1s with the inclusion
of cognitive scores and CSF related biomarkers). People
classified as not- nADrp are used as inputs for the second
stage of the classification.

2. In the second stage of the classification, the algorithm
works on the distinction between people with an AD-
related mild cognitive impairment and with Alzheimer’s
disease. The LASSO2 performs a weighted sum of selected
features/regions and gives the ApV2 (ApV2s with the
inclusion of cognitive scores and CSF related biomarkers)
which characterise a prodromal from a late phase of AD.

The performance of the algorithm was tested using two
methods. In Method A, the features extracted from the 45-region
brain mask (alone and together with cognitive/CSF scores) were
used and, in Method B, features extracted from the (45+ 70)-
region brain mask (alone and together with cognitive/CSF scores)
were used. Based on the accuracy and the accuracy/AUC values,
Method B was chosen for the computation of the ApV1, and
Method A was chosen for the computation of ApV1s, ApV2 and
ApV2s (Table 1).

Genomic analysis. Six genome-wide association study (GWAS)
analyses were performed across three phenotypes (nADrp,
MCIAD, AD) derived from three variables (original label (ADNI),
ApV and ApVs). One GWAS was performed for nADrp vs
MCIAD and another GWAS for nADrp vs AD across all five
variables. APOE4 allele status was provided by ADNI APOE
genotype dataset. All the GWAS analyses were adjusted for age
and gender using the GWASTools R package (v1.36). Each
GWAS analysis calculated the main effects of all single-nucleotide
polymorphisms (SNPs) on the target label (MCIAD /AD). For all

Fig. 1 Overview of the study design and two-step least absolute
shrinkage and selection operator (LASSO) approach. Data used in this
work were obtained from ADNI database, the OASIS consortium and the
hospital memory clinic (IMC Cohort). Age-matched T1w MRI images were
collected and segmented into 115 brain regions using the FreeSurfer’s
recon-all function. Isotropic (1 × 1 × 1) T1w MRI scans and their brain masks
were used for the radiomic analysis in a combined double step approach.
After the selection and the standardisation of features, a first least absolute
shrinkage and selection operator (LASSO1) was trained to classify people
into those without and with AD-related pathology (nADrp and ADrp).
Within the last group, a second LASSO (LASSO2) was trained to
characterise patients with a mild cognitive impairment due to AD (MCIAD)
from AD patients. The model was also integrated with cognitive scores
(MMSE and LDELTOTAL) and CSF-based biomarkers (Aβ, τ and pτ). As
the final algorithm was to be used to discriminate between ADrp and
nADrp, combined healthy controls and patients affected by other non-AD
pathologies (e.g. Frontotemporal dementia and Parkinson’s disease
dementia) were combined into one group referred to as non-AD-related
pathology group. Initial analysis of T2w MRI data did not yield
discriminatory information, so only T1w MRI data is reported.
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GWAS the empirical p values were based on the Wald statistic27.
Manhattan plots were used to visualise GWAS results.

Statistics and reproducibility. Standard statistical analysis was
applied to all the figures as appropriate and indicated in the figure
legends. All samples were used once. Multiple testing was cor-
rected with the FDR method. All the statistical analyses were
conducted in Matlab R2019b.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Characteristics of data and patients. Data used in this work were
obtained from the ADNI database (www.loni.ucla.edu/ADNI),
launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI
is to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. For up-to-date
information, see www.adni-info.org. From this database, all
people for whom baseline MRI data (T1w magnetisation-
prepared rapid acquisition with gradient echo (MP-RAGE)
sequence at 1.5 T), age, and cognitive scores (MMSE28, a brief
screening test for cognitive status and the LDELTOTAL29, a
measure of verbal episodic memory), CSF-based biomarkers (Aβ,
τ and pτ) were available have been included.

For the diagnostic classification at baseline, the method was
trained on 783 people scanned at 1.5 T (ADNI1 cohort). They
were grouped as 216 healthy controls, 208 people with MCI due
to AD (MCIAD), 181 AD, 94 patients with Frontotemporal
Dementia (FTD), and 84 with Parkinson’s disease (PD).

In particular, based on the data obtained from the ADNI
database, two new groups of people were defined: the nADrp
group, which contains people who do not show any pathology
related to AD (healthy controls, PD and FTD were included
here); and the ADrp group which, on the contrary, contains
people with MCI due to AD and AD patients.

The method was externally tested on:

● An unseen 1.5 T dataset obtained from the OASIS
consortium (https://www.oasis-brains.org/) of 64 people
for whom baseline T1w sequence, age and MMSE scores
were available (53 CN and 11 AD).

● An unseen 3 T dataset of 402 people obtained from the
ADNI3 cohort for whom baseline T1w sequence, age,
cognitive scores and CSF related biomarkers were available
(172 CN, 161 MCIAD and 69 AD).

● The IMC cohort: 83 patients with atypical presentations
who underwent clinical Amyloid PET imaging at the
Imperial Memory Centre (IMC, London, UK) as part of
their diagnostic workup with a 1.5 T T1w MRI scan. Of the
396 patients who had an Amyloid PET scan between
December 2013 and June 2019, those (n= 83) who had an
MRI scan available acquired between 3–6 months after the
Amyloid PET scan and received a clinical neuropsycho-
logical assessment which included the administration of
the Logical Memory Test, were included to the study. Of
these, a subgroup of 22 patients also had an MMSE
administered within 12 months of MRI scanning. At the
Memory Centre, the decision to perform a clinical
Amyloid PET scan is made by consensus within the
Cognitive Neuroradiology Multidisciplinary Team30 and
referral to Amyloid imaging is in line with the Appropriate
Use Criteria published by the Amyloid Imaging
Taskforce31. These criteria recommend the use of clinical
Amyloid PET in three main categories of patients: (1) with
persistent/progressive unexplained MCI; (2) with atypical
course or aetiologically mixed presentation; (3) with early
age of onset. Moreover, patients undergoing clinical Amy-
loid PET imaging should report objective cognitive
impairment with substantial diagnostic uncertainty follow-
ing a comprehensive evaluation31. For the IMC cohort,
mainly employed for the classification/evaluation of earlier
diseases using structural MRI, all images were visually read
as ‘amyloid-positive’ (AMY+, N= 45) or ‘amyloid-nega-
tive’ (AMY−, N= 38) by an experienced nuclear medicine
radiologist using greyscale images. All AMY+ patients
received a clinical diagnosis of AD. AMY− patients were
either diagnosed with another neurodegenerative disease
(progressive non-AD MCI (N= 4), MCI due to hyperten-
sive microvascular disease (N= 1), unspecified neurode-
generative disease (NDG) (N= 1), MCI due to previous
stroke (N= 1), NDG with Parkinsonian features (N= 1),
Lewy body dementia (N= 1), tauopathy (N= 1), normal
pressure hydrocephalus (N= 1), isolated cerebral amyloid
angiopathy (N= 1)) or with a non-neurodegenerative
condition (e.g. depression). Patient characteristics are
provided in Supplementary Fig. 2.

A multiparametric analysis was conducted on a subset of 118
diffusion tensor imaging (DTI) MRI sequences obtained from
ADNI (39 AD, 40 CN and 39 MCIAD). They were used to assess
the variability of the fractional anisotropy (FA) and its relation-
ship with the extracted features. Finally, quantitative phenotypes
derived from ADNI Genetics Core were available for 199 CN, 187
MCIAD and 166 AD people of our 1.5 T training cohort and used
for GWAS analysis.

Table 1 Methods comparison.

AUC Threshold Specificity Sensitivity Accuracy PPV NPV

METHOD A (45 regions) nADrp vs ADrp T1w MRI 0.9047 −0.0387 0.8224 0.8362 0.8284 0.7823 0.8681
T1w MRI+ scores 0.9971 −0.1969 0.9671 0.9310 0.9554 0.9558 0.9484

MCIAD vs AD T1w MRI 0.7942 0.0648 1.0000 0.5185 0.7759 1.0000 0.7045
T1w MRI+ scores 0.9656 0.8184 0.9384 0.8583 0.8633 0.9237 0.8839

METHOD B(45+ 70 regions) nADrp vs ADrp T1w MRI 0.9920 0.0938 0.9831 0.9741 0.9786 0.9826 0.9748
T1w MRI+ scores 0.9859 0.6318 0.9830 0.9741 0.9786 0.9826 0.9747

MCIAD vs AD T1w MRI 0.7984 0.2554 0.9516 0.5556 0.7672 0.9091 0.7108
T1w MRI+ scores 0.9367 0.1428 0.8871 0.8333 0.8621 0.8654 0.8594

The classification between nADrp and ADrp, as well as the classification between MCIAD and AD patients were tested with two methods.
With Method A, the algorithm received as input features extracted from the 45 brain regions resulting from segmentation of the white matter (without and with the CSF/cognitive scores). Method B
considered the features extracted from the 70 subcortical regions (without and with the CSF/cognitive scores).
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Radiomic predictive vector characterises Alzheimer’s disease.
For each subject, T1w MRI images were automatically segmented
into 115 regions from which radiomic features were indepen-
dently acquired, standardised and reduced with a machine
learning-based model. They were finally combined in Alzheimer’s
predictive vectors.

ApV1 – a biomarker to discriminate between patients with and
without AD-related pathology. Among the 656 features extrac-
ted for each of the 115 brain regions, LASSO1 selected 20 features
(those with non-zero coefficients) distributed in 14 regions
(Fig. 2a). The weighted sum of extracted features in the selected
regions gave the Alzheimer’s predictive vector ApV1. With the
integration of cognitive scores and CSF-based biomarkers,
LASSO1 selected 19 features distributed among 12 regions
(Fig. 2b). In a similar way, the combination of features, cognitive
scores and regions gave the predictive vector ApV1s. Figure 2aI,
aII (and bI-bII) show the tenfold cross-validated deviance of the
LASSO fit and the feature coefficients plotted against the
shrinkage parameter lambda extracted for the ApV1 (ApV1s).
Figure 2aIII, aIV show the ROC curve for the validation of ApV1

(AUC of 0.99) and the distribution of the validated ApV1 in the
nADrp and ADrp groups, respectively. Similarly, Fig. 2bIII, bIV
show the ROC curve for the validation of ApV1s (AUC of 0.99)
and the distribution of the validated ApV1 in the nADrp and
ADrp group, respectively. The predictive ability of the ApV1 in
discriminating people without AD-related pathologies (nADrp)
from those with AD-related pathology (ADrp) was compared to
the clinical standard measures of hippocampal volume and CSF
Aβ (Table 2). Of note, the measurements of diagnostic accuracy
of Aβ are obtained with the application of established cut-off
values32 from the comparison between CN and ADrp. Compared
to the standard measures, our method showed higher specificity,
sensitivity, accuracy, negative and positive predictive values,
likelihood ratios and diagnostic odds ratios. ApV1 showed a state-
of-the-art accuracy of 0.98 (0.26 and 0.62 for the volume of the
hippocampus and CSF Aβ, respectively) in the prediction of AD-
related pathologies. Of note, neither age nor CSF biomarkers were
selected by LASSO1.

The testing of the method on the unseen 1.5 T OASIS cohort
showed 0.81 and 0.83 accuracies for ApV1 and ApV1s,
respectively (Table 2). Applied unmodified to a different field
strength (3 T), our method showed 91 and 80% specificity,
together with reduced accuracy of 0.49 and 0.47 for the ApV1 and
ApV1s, respectively.

ApV2 — a biomarker to categorise ApV1/ApV1s positive
patients into prodromal (MCIAD) and late (AD) groups. The
LASSO2 selected 8 features distributed in seven regions (Fig. 3a)
with a dominance of the left brain. The weighted sum of the
extracted features in the selected regions gave the Alzheimer’s
predictive vector ApV2. With the integration of cognitive scores
and CSF-based biomarkers, the LASSO2 selected 19 features
distributed in 15 regions (Fig. 3b). The combination of features,
cognitive scores and regions gave the predictive vector ApV2s.
Figures 3aI, aII (and bI-bII) show the tenfold cross-validated
deviance of the LASSO2 fit and the feature coefficients plotted
against the shrinkage parameter lambda extracted for the ApV2

(ApV2s). Figure 3aIII, aIV show the ROC curve for the validation
of ApV2 (AUC of 0.79) and the distribution of the validated ApV2

in the MCIAD and AD groups, respectively. Similarly, Fig. 3bIII,
bIV show the ROC curve for the validation of ApV2s (AUC of
0.95) and the distribution of the validated ApV2 in the MCIAD
and AD groups, respectively. The predictive ability of the ApV2 in
discriminating people with prodromal and later forms of AD in

comparison with the standard clinical measures—the volume of
the hippocampus and the CSF Aβ—was quantified with the
measures of diagnostic accuracies and is summarised in Table 3.
ApV2 reached an accuracy of 0.79 in the prediction of AD, with
higher accuracy of 0.86 with the integration of clinical scores,
independent of age and CSF biomarkers. The high accuracy is
remarkable given the continuum of disease progression between
MCIAD and AD. Applied to different field strengths (3 T), our
method showed an accuracy of 0.62 and 0.82 for the ApV2 and
ApV2s, respectively. The LASSO2 could not be tested on the
OASIS cohort as it does not include any MCIAD people. In
aggregate, our results show a predominant dysfunction in the left
hemisphere33. This confirms the strong left-hemispheric later-
alisation found in the early stages of the disease compared to
weak right-hemispheric lateralisation found in advanced stages34

(see also Supplementary Note 1 and Supplementary Fig. 3).

Repeatability of the Alzheimer’s predictive vectors. The ApV
methods were compared to the standard imaging measure (the
volume of the hippocampus) and tested on a second T1w MRI
scan obtained on the same day of the baseline scan used for
training the model. The Bland–Altman plots are shown in Sup-
plementary Fig. 4. Based on the reporting guidelines by Koo and
Li35, a one-way random effects, absolute agreement, single rater/
measurement interclass correlation coefficient was evaluated and
was 0.83, 0.89, 0.83 and 0.82 for ApV1, ApV1s, ApV2 and ApV2s,
respectively. The interclass correlation coefficient for the hippo-
campal volume was 0.94. A boxplot of the distribution of the
volumes of the hippocampus in the main groups is also shown in
Supplementary Figure 4f. The robustness (non-random nature) of
our ApV1 and ApV2 was further tested. Results are summarised
in Supplementary Table 2. The measurements of diagnostic
accuracy of ApV1 (a) and ApV2 (b) are obtained when the ApV is
computed with the complete set of features extracted by the
LASSO (Ftot), the four features with the highest weights (Ftest4)
and all the possible permutations with three (Ftest3-p1, Ftest3-p2,
Ftest3-p3, Ftest3-p4) and two features (Ftest2-p5, Ftest2-p6,
Ftest2-p7, Ftest2-p8, Ftest2-p9 and Ftest2-p10) are reported.
With regards to the ApV1, Ftest4 showed a comparable perfor-
mance compared to Ftot. Among all the permutations, Ftest3-p2
obtained the best performance involving the features extracted in
the right middle temporal, rostral middle frontal and temporal
pole (98% accuracy, 0.99 AUC). Regarding ApV2, the best per-
formance was obtained when the ApV was computed with only
two features extracted from the left cerebral white matter (WM)
and left Cerebellum WM (78% accuracy and 0.79 AUC).

The ApV on 'real-world' data. The model was tested on the IMC
cohort, which includes people who underwent a clinical amyloid
PET scan at our institution and are classified as Amyloid-positive
(AMY+) or negative (AMY−). When applied to this 'real-world'
cohort, no statistical difference was found between ApV1 and
ApV2 in people with positive/negative amyloid enhancement
(p= 0.88) (Supplementary Fig. 5b). Regardless of the PET output,
people were classified as nADrp and MCIAD (in particular, of the
44 AMY−, 42 were classified as nADrp, 2 as MCIAD and 1 as AD;
of the 38 AMY−, 36 were classified as nADrp and 2 as MCIAD).
The model was also tested on a subgroup of 22 people whose
T1w MRI scan was obtained 5 ± 4 months after Amyloid PET
imaging and was used together with the MMSE and the LDEL-
TOTAL cognitive scores. In this small cohort, people with a
negative PET scan were classified as nADrp (N= 8), MCIAD
(N= 2) and AD (N= 1). People with a positive scan were evenly
classified as nADrp and MCIAD (N= 5), only one subject was
classified as AD. In relation to the PET output, our ApV1s showed
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Fig. 2 Results of LASSO1. The biophysical mesoscopic properties of brain regions in nADrp and ADrp people are depicted by the combination of features/
regions selected by the LASSO1. In the radial phylogeny trees, the components of ApV1 (a), ApV1s (b) are summarised. aI and aII show the tenfold cross-
validated deviance of the LASSO1 fit and feature coefficients plotted against the shrinkage parameter Lambda. Shown in aIII the ROC curve for the
validation of ApV1. Shown in aIV is the distribution of the validated ApV1 in the nADrp (N= 152) and ADrp (N= 116) groups. bI and bII show the tenfold
cross-validated deviance of the LASSO1 fit with the integration of cognitive scores and CSF-based biomarkers and the feature coefficients plotted against
the shrinkage parameter Lambda. bIII and bIV show the ROC curve for the validation of ApV1s, and the distribution of the validated ApV1s in the nADrp
(N= 152) and ADrp (N= 116) groups. In the radial trees, branches are coloured based on the region selected (hippocampus: red, other: black), their brain
hemisphere (left: orange, right: blue), and the cognitive score (green). In the box plots, points are laid over a 1.96 standard error of the mean (95%
confidence interval) and one standard deviation (black vertical line).
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a statistical difference between AMY- and AMY+ (p= 0.02)
(Supplementary Fig. 5b).

Genome-wide association study and fractional anisotropy.
Figure 4 shows the Manhattan plot of the GWAS for the ApVs.
The Manhattan plot shows one SNP above a significance
threshold of p < 10−7. This SNP corresponded to the genotype RS
IDs: rs2075650. The rs2075650 SNP was above the significance
thresholds across all variables, original labels, ApV and ApVs
(Supplementary Figs. 6, 7). Similarly, for all cognitively normal vs
mild cognitive impairment, no SNPs were above the threshold.
Additionally, in the ApV group, ADrp vs AD, the p < 10−6 SNP
rs575606 was above a threshold of p < 10−6 (Supplementary
Fig. 6). When performing a GWAS adjusting for the presence of
one or two APOE4 alleles, no SNPs were identified as significantly
associated with AD in any of the outcomes (Supplementary
Fig. 7). Additionally, we present LocusZoom plots of the 2000
base pairs around rs2075650 on the GWAS results without the
adjustment of APOE4 (Supplementary Fig. 8). An extensive
interpretation of the GWAS results is included in Supplementary
Note 2. In aggregate, Supplementary Note 2 includes the allele
frequencies evaluation (allele proportions and Hardy–Weinberg
Equilibrium Fisher’s exact test p value) for the SNP rs2075650,
which shows ‘B’ to be the minor allele with both the ApVs and
ApV classification (Supplementary Table 3).

In agreement with the ADrp phenotype, the analysis of
fractional anisotropy from DTI MRI sequences showed a
neuronal loss in ADrp people. The variation of FA was tested
in 115 brain regions. A Wilcoxon rank-sum test was used to test
the regional statistical difference of FA between nADrp (N= 79)
and ADrp (N= 39) and between MCIAD (N= 31) and AD
(N= 8) people. For most regions, no statistically significant
reduction was present (p > 0.05) (Fig. 4C). Twenty-two out of 115
regions showed a significant variation of FA between nADrp and
ADrp (left and right cerebral cortex and the left caudate showed
an FA increase). Between MCIAD and AD, 11 out of 115 regions
showed a significant variation of FA (an increase of FA was
present only in the left amygdala). Figure 4D shows the absolute
values of FA in the regions for which a statistical difference was
found between nADrp and ADrp and between MCIAD and AD
patients (p < 0.05).

Discussion
This study presents a novel MRI-based radiomic predictive vector
which outperforms standard hippocampal volume and CSF Aβ
measurements (Table 2) reaching a 0.98 accuracy in an internal
test set (mean value 0.9830, 95% confidence interval (CI) [0.9829,
0.9831]) for the triage of people without an AD-related pathology.
Our ApV is robust and repeatable across MRI scans (Supple-
mentary Fig. 4), demonstrating its potential for applicability in
clinical practice in the future.

This method does not require a subject matter expert, but
rather uses established software for both brain segmentation
(FreeSurfer)25,26,36 and radiomics analysis16. The algorithm
computes manually engineered features allowing an easy inter-
pretation of the ApV and facilitating clinical translation. To avoid
overfitting, the dimensionality of the model is reduced with the
‘least absolute shrinkage and selection operator’37, which selects
the most informative and less redundant features corresponding
to specific brain regions. The LASSO is suitable for the regression
of high-dimensional features in a radiomics strategy38 allowing,
in a single regression model, the statistical analysis of complex
data where data are labelled to exploit dependence patterns in
specific brain regions. Compared to the most common multi-
variate models present in the literature (Random Forest, NaïveT
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Fig. 3 Results of LASSO2. The biophysical mesoscopic properties of brain regions in MCIAD and AD people are depicted by the combination of features/
regions selected by the LASSO2. In the radial phylogeny trees, the components of ApV2 (a), ApV2s (b) are summarised. aI and aII show the tenfold cross-
validated deviance of the LASSO2 fit and the feature coefficients plotted against the shrinkage parameter Lambda. Shown in aIII the ROC curve for the
validation of ApV2. Shown in aIV the distribution of the validated ApV2 in the MCIAD (N= 62) and AD (N= 54) groups. bI and bII show the tenfold cross-
validated deviance of the LASSO2 fit with the integration of cognitive scores, CSF-based biomarkers and the feature coefficients plotted against the shrinkage
parameter lambda. bIII and bIV show the ROC curve for the validation of ApV2s, and the distribution of the validated ApV2s in the MCIAD (N= 62) and AD
(N= 54) groups. In the radial trees, branches are coloured based on the region selected (hippocampus: red, other: black), their brain hemisphere (left: orange,
right: blue), and the cognitive score (green). In the box plots, points are laid over a 1.96 standard error of the mean (95% confidence interval) and one standard
deviation (black vertical line).
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Bayes, K-Nearest Neighbours and Support Vector Machine), our
univariate analysis shows higher accuracy (Supplementary
Table 4) and easier interpretability, thanks to the implementation
of manually engineered features, facilitating clinical translation.
In order to improve the model’s generalisability, the training of
ApV exploits commonalities and differences within the segmen-
tations between controls and patients with FTD, PD, MCI due to
Alzheimer’s disease and AD—appreciating that patients who
come to the memory clinic may have other conditions. We
rationalised that the extra information from FTD and PD seg-
ments will allow the model to gain a better contextual under-
standing of the regions of interest and better discriminate nADrp
from ADrp rather than for detecting FTD or PD per se. Appre-
ciating that the inclusion of non-AD pathologies in the control
group of the training set could have introduced a classification
bias leading to an overrated model accuracy, further tests were
done to assess the impact of PD and FTD patients in the nADrp
group. The measurements of diagnostic accuracy obtained when
the classification is computed between CN and ADrp, as well as
between CN and MCIAD and CN and AD patients (in compar-
ison with the proposed original method, in italic – Table 4) prove
that the performance of our method is not influenced by the
presence of PD and FTD patients in the nADrp group.

In an internal test set (the 1.5 T ADNI cohort), the ApV1 is able
to discriminate between people with (ADrp) and without (nADrp)
Alzheimer’s related pathologies with a 0.98 accuracy. Differently
from the majority of published research studies, where models are
usually trained between two categories (e.g. HC vs AD or MCI vs
AD) (Supplementary Data 1), our algorithm includes both AD
patients and people with the early form of AD, mild cognitive
impairment in the ADrp group. This procedure permits triage of
patients who neither have MCIAD nor AD, taking into account the
notion that Alzheimer’s disease exists along a spectrum, from early
memory changes to functional dependence and death. To the best
of our knowledge, the accuracy reached by the ApV in the internal
dataset (obtained by analysing MRI data with or without cognitive
scores) is superior to the ones obtained from published research
studies, which focus on a single internal test set only39–41. However,
the true performance of a radiomic model needs to be validated on
external datasets or independent institutional cohorts; in practice,
only a minority of studies report an application of algorithms to
external datasets42. When tested on an external test set (the unseen
1.5 T OASIS cohort), our algorithm reaches a 0.86 accuracy, higher
than previously reported studies43. Furthermore, when compared

to the standard clinical measures of hippocampal atrophy and
cerebrospinal fluid beta-amyloid concentration, the ApV shows
higher accuracy, presenting a potentially valid alternative to the
invasive CSF measurements.

To be precise, the ApV is independent of the amyloid levels in
the CSF. Regardless of the stronger pathological biomarker sig-
nature encountered when increased CSF concentrations of τ and
pτ species, decreased concentrations of Aβ32,44 and cognitive
scores are considered together with structural data, it is notable
that Aβ, τ and pτ were not selected as part of the optimised ApV
algorithm. This result can be explained by the inner low accuracy
of the CSF-based biomarkers collected for our cohorts (Supple-
mentary Table 5), with respect to the established cut-off values
(93 pg/ml for τ, 192 pg/ml for Aβ1–42 and 23 pg/ml for pτ)32. The
non-overlapping nature of the ApV means that a combination of
these with CSF biomarkers could be explored in the future to
further improve accuracy in early MCIAD /AD.

The ApV describes the mesoscopic architecture and the bio-
logical changes of an AD brain. With an unsupervised approach,
and appreciating the lack of post-mortem AD confirmation in
our cohort of people, the algorithm selects texture and shape
features, strong biomarkers of AD20,45,46, in regions typically
involved in the development of the disease (the hippocampus,
entorhinal cortex, amygdala47). In particular, our results show a
predominant dysfunction in the left hemisphere33, confirming the
strong left-hemispheric lateralisation found in the early stages of
the disease compared to weak right-hemispheric lateralisation
found in advanced stages34. As extensively described in the
'Biological interpretation of ApV' in the Supplementary Note 1,
the cortical grey matter structural changes, usually due to the
ageing brain and cognitive decline caused by neuronal loss48–50,
are represented in part within the ApV by GLCM and FD
features51 and confirmed, with the multiparametric analysis of
DTI MRI images, by the statistically significant decrease of FA in
AD patients. For example, the GLCM correlation feature, filtered
with an LHL wavelet filter, in the left lateral ventricle expresses
the dependency of grey level values to their respective voxels in
the GLCM possibly relating to grey levels’ distribution in this
brain region of AD patients where ventriculomegaly is commonly
observed. Brain parenchymal shrinkage causes, in most neuro-
degenerative disorders, the passive enlargement of the lateral,
third and fourth ventricles with a significant ventricular enlar-
gement associated with AD52. Furthermore, cognitive decline,
expressed as local neuronal loss of many hippocampal subfields

Table 3 Diagnostic performance of the Alzheimer’s predictive vectors ApV2 and ApV2s.

Training 1.5 T ADNI dataset Unseen 1.5 T ADNI dataset Unseen 3 T ADNI dataset

ApV2 ApV2s ApV2 ApV2s ApV2 ApV2s Volume of hippocampus Aβ
AUC 0.8580 0.9656 0.7258 0.8983 0.5072 0.7111 0.5345 0.5
Threshold 0.3017 0.8184 0.3017 0.8184 0.3017 0.8184 −0.7827 192
Specificity 0.9863 0.9384 0.9516 0.9384 1 0.9875 0.3387 0
Sensitivity 0.5590 0.8583 0.5000 0.8583 0.0289 0.4347 0.7593 1
Accuracy 0.7875 0.9011 0.7863 0.8633 0.6296 0.8217 0.5345 0.4887
NPV 0.7200 0.8839 0.6860 0.8839 0.7061 0.8030 0.6176 NA
PPV 0.9726 0.9237 0.9000 0.9237 1 0.9375 0.5000 0.4887
LR+ 40.8110 13.9230 10.3333 13.9230 NA 35.0000 1.1481 1
LR− 0.4471 0.1510 0.5254 0.1510 0.9710 0.5723 0.7108 NA
Yi 0.5454 0.7966 0.4516 0.7966 0.0289 0.4223 0.0980 0
DOR 91.2857 92.1790 19.6667 92.1790 NA 61.1538 1.6154 NA

Diagnostic performance of ApV2 and ApV2s evaluated in the 1.5 T training dataset (ADNI), the unseen 1.5 T ADNI and 3 T ADNI datasets compared to the volume of the hippocampus and Aβ in the
discrimination between MCIAD and AD patients. *Of note, the measurements of diagnostic accuracy of Aβ are obtained with the application of the established cut-off values (Shaw et al.).
In the testing test, AUC values were generated from sensitivity and specificity62.
DOR diagnostic odds ratio, Yi Youden index value, LR+ positive likelihood ratio, LR− negative likelihood ratio, NA undefined values derived from the division by zero, NPV negative predictive value, PPV
positive predictive.
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(subiculum, cornu ammonis) following AD progression (as also
confirmed by the statistically significant decrease of fractional
anisotropy), is expressed by the Neighbouring Grey Tone Dif-
ference Matrix (NGTDM) coarseness feature extracted in the

right hippocampus. This is a measure of the average difference
between the central voxel and its neighbourhood and is an
indication of the spatial rate of change. A higher value indicates a
lower spatial change rate and a locally more uniform texture.
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Together with high pass wavelet filters applied in one dimension
and a low pass one applied in the other two, the extraction of the
coarseness in the hippocampus represents an index of hetero-
geneity. Interestingly, the algorithm also selects regions not
commonly related to AD, such as the cerebellum and the ventral
diencephalon. Together with a few studies reported in the
literature53,54, this outcome challenges the traditional view that
white matter bundles in the cerebellum or in the ventral dien-
cephalon are not affected by AD, possibly highlighting new
therapeutic opportunities.

The GWAS performed across nADrp, MCIAD and AD derived
from the ApV classification labels highlights genetic insights
distinct from classical APOE-only gene association in AD. The
non-causal significant alteration of the SNP rs2075650 found in
patients with ADrp-like phenotype reinforces a body of research
that associates this gene with MCIAD and AD55–57. TOM40 is
located adjacent to APOL, and the two genes are thought to be
correlated with Alzheimer’s due to linkage. Given that after
adjusting for APOE4 allele status, rs2075650 is no longer sig-
nificant, this suggests the TOM40 association signal is driven by
the APOE4 allele and surrounding variants.

The ApV is also age-independent for the age range used. The
similarity between age-related atrophy in AD and in normal aging
represents one limitation of applying multivariate models to
structural MRI58. In this study, this issue is assessed following the
age-correction method by Moradi et al.59, which introduced a
large distortion on the MRI image, limiting the reliability of the
extracted features, thus, considering age as an additional feature.
The result was a non-selection of age among the less redundant,
most significant features.

This method provides a biomarker able to detect an early stage of
AD with a significant potential improvement of the clinical decision
support system. The ApV was tested on a clinical cohort of people
with objective cognitive impairment and uncertain underlying
aetiology caused by an atypical clinical course or the presence of
multiple co-morbidities (Fig. 5a). When employed in this cohort, the
ApV outperformed the hippocampal volume measurements (Fig. 5b)
and the standard cognitive scores (Fig. 5e) showing a statistically
significant difference between the AMY− and AMY+ groups

(p= 0.02, Fig. 5d). Therefore, where isolated hippocampal atrophy
or episodic memory impairment fails to differentiate AMY+ from
AMY− patients, the ApV shows a stronger diagnostic potential.

Other than its retrospective nature, a limitation of this study
is represented by the lower performance of the method when
tested unmodified at higher different field strengths (the unseen
3 T dataset). As shown in Table 2, very high positive predictive
values are associated with low sensitivity and overall low
accuracy for both the ApV1 and ApV2 obtained from a baseline
3 T ADNI cohort. This result confirms the hypothesis that MRI
radiomic features are susceptible to magnetic field strength60

and limits the applicability of our current method only to 1.5 T
data. Future studies will focus on the development of pre-
processing techniques for the improvement of the performance
of the algorithm on 3 T data together with the introduction of
an equivalent algorithm for higher field strengths. A second
limitation of this study is the impossibility of directly comparing
our method with the published literature. This is mainly related
to how we decided to structure our input to improve the
model’s generalisability: the control group, together with heal-
thy people, also contains people with Parkinson’s disease and
frontotemporal dementia. A third limitation of this study is
related to the computational effort needed to pre-process the
structural MRI data. The segmentation step performed by
FreeSurfer’s recon-all function usually requires about 10/12 h
per subject. In this regard, to reduce computation time, we
decided to re-run the analyses in parallel using 12 logical cores:
a group of 10/15 scans were segmented with this latter approach
in the same amount of time. In fact, we believe that with the
implementation of a faster segmentation pipeline, this work
would outperform the clinical tests now used in isolation. A
possible future solution to minimise segmentation time in
clinical practice could be the extraction of a custom T1w-MRI-
based template built from the chosen dataset (e.g. using the
SPM DARTEL pipeline).

In summary, this study proposes an unsupervised approach
for the development of an MRI-based biomarker for the biolo-
gical characterisation of AD. The ApV is reproducible and
robust. It can be easily computed with the calculation of

Fig. 4 Genetic and molecular characteristics associated with the ApV biomarker. In A, B the Q–Q and Manhattan plots of genome-wide association
study (GWAS) of the cognitively normal and Alzheimer’s disease labels derived from ApVs are shown. In detail, B is the Manhattan plot of the p values
(−log10(Wald p value)) from GWAS analysis of the ApVs. The horizontal line displays the cut-off for two significant levels (p < 10−7). Shown in A is the
quantile–quantile (Q–Q) plot of the distribution of the observed p values (−log10(observed p value)) in this sample versus the expected p values
(−log10(expected p value)) under the null hypothesis of no association. Shown in C is the variation of fractional anisotropy tested in 115 brain regions. A
Wilcoxon rank-sum test was used to test the regional statistical difference of FA between nADrp (N= 79) and ADrp (N= 39) and between MCIAD
(N= 31) and AD (N= 8) people. D The absolute values of FA in the regions for which a statistical difference was found between nADrp and ADrp and
between MCIAD and AD patients (p < 0.05) is shown.

Table 4 Test on the diagnostic performance of the algorithm.

AUC Threshold Specificity Sensitivity Accuracy PPV NPV

nADrp vs ADrp train 0.9981 0.0938 0.9819 0.9853 0.9836 0.9818 0.9855
test 0.9920 0.0938 0.9831 0.9741 0.9786 0.9826 0.9748

CN vs ADrp train 1.0000 −0.1109 0.9934 1.0000 0.9976 0.9964 1.0000
test 1.0000 −0.1109 1.0000 0.9828 0.9890 1.0000 0.9701

CN vs MCIAD train 1.0000 0.0722 1.0000 0.9932 0.9966 1.0000 0.9934
test 1.0000 0.0722 1.0000 0.9839 0.9921 1.0000 0.9848

CN vs AD train 0.9999 −0.1109 0.9934 1.0000 0.9964 0.9922 1.0000
test 1.0000 −0.1109 1.0000 0.9815 0.9916 1.0000 0.9848

The two inputs to the LASSO1 are the nADrp group, which includes healthy controls and people with Parkinson’s and frontotemporal disease, and the ADrp group, which includes people with MCIAD and
AD. The diagnostic performance of the algorithm was tested when the classification is computed between the ADrp group and healthy people, between CN and MCIAD and CN and AD patients.
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manually engineered features and is ready to be integrated into
the clinical decision support system without the need for addi-
tional sampling or patient testing.

Data availability
The radiomics data generated in this study have been deposited into the Mendeley
database under the accession code DOI: 10.17632/rpztyz22df61. All the other data
supporting the findings of this study, together with the source data underlying the graphs
and charts shown in the manuscript are available and have been deposited into the
Mendeley database under the accession code https://doi.org/10.17632/rpztyz22df61.

Code availability
The MATLAB scripts used to reproduce the key findings and generate figures are
publicly accessible in Mendeley Data with the identifier https://doi.org/10.17632/
rpztyz22df.161.
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